Survival of ¹⁸⁰Ta During the s-Process

R.-M. Larimer, Y. D. Chan, M. P. C. Isaac, K. T. Lesko, A. O. Macchiavelli, R. W. Macleod, M. E. Moorhead, E. B. Norman, K. S. Krane*, K. Zaerpoor*, J. Beckert, L. A. Bernsteint, L. P. Ferrist

Over the years, many attempts have been made to to photodeexcite ¹⁸⁰Ta^m to ¹⁸⁰Ta^g using intense sources $t_{1/2} = 8.1 \text{ hour } (J^{\pi} = 1^{+}) \text{ ground state } [1].$ standard s- , r-, and p-processes all fail to levels [5]. quantitatively account for the observed abundance of through the stable Hf isotopes weakly populates a the gamma decays of levels up to approximately 2 the r-process could also reach ¹⁸⁰Ta. produced in the r-process could feed $J^{\pi} = 8^{-}$ isomer in another family that leads to the long-lived 180 Ta^m. 180 Hf and then produce 180 Ta by beta decay. We We have not found any level which has a Washington and at 88" branching ratio is too small to account for a environment. significant amount of ¹⁸⁰Ta [2,3]. production mechanism responsible for ¹⁸⁰Ta remains an open question.

Regardless of how ¹⁸⁰Ta is actually produced in stars, the question remains as to whether it can survive in the hot dense stellar environment? At the temperatures appropriate to the s- and r-processes, there is an enormous bath of high energy photons present. Such photons could excite ¹⁸⁰Ta^m up to a higher-lying level of intermediate spin which subsequently decays though a γ-cascade to the ¹⁸⁰Ta ground state. Such photoexcitation could lead to thermal equilibration between the ground state and isomer, with the result that the effective ¹⁸⁰Ta half life becomes on the order of days. This would drastically reduce the amount of ¹⁸⁰Ta^m that would actually emerge from a stellar environment.

The question of whether or not this process actually happens in nature depends critically on the excitation energy and γ -decay modes of levels in 180 Ta. Attempts

find a plausible production mechanism for Nature's of ¹³⁷Cs and ⁶⁰Co have failed [4]. This suggests that rarest isotope and only naturally-occurring isomer, the mediating levels may lie above 1.33 MeV excitation the odd-odd nucleus ¹⁸⁰Ta. The long-lived ¹⁸⁰Ta^m energy. Recent Coulomb deexcitation experiments have $(J^{\pi} = 9^{-})$ is located approximately 75 keV above the observed the production of ^{180}Tag from $^{180}\text{Ta}^{m}$ and The suggest that there may in fact be lower lying mediating

In order to answer the question of whether or not 180 Ta ($^{[180}$ Ta]/ $^{[181}$ Ta] = $^{10-4}$.) Several detours off 180 Ta^m can survive in stellar environments, we have the standard s- and r- process paths that could lead populated levels in ¹⁸⁰Ta using the ¹⁷⁶Yb(⁷Li,3n) to ¹⁸⁰Ta have been investigated. The s-process path reaction and have used GAMMASPHERE to studying $I^{\pi} = 8^{-}$ isomer in ¹⁸⁰Hf which can then beta decay to MeV excitation energy. Thus far we have been able 180 Ta^m. However, this route was shown to be too to place approximately 85 γ -ray transitions among small to account for ¹⁸⁰Ta abundance [1]. In principle 60 different levels. We observe a family of ¹⁸⁰Lu transitions that ultimately lead to the ¹⁸⁰Tag and have shown with experiments at the Univ. of measurable decay branch to both levels. Thus it may Cyclotron that this be that ¹⁸⁰Ta^m can survive in an s-process

Footnotes and References

*Oregon State Univ., Corvallis, OR

- † Lawrence Livermore National Laboratory
- 1. S. E. Kellogg and E. B. Norman, Phys. Rev. C 46, 1115
- 2. S. E. Kellogg and E. B. Norman, Phys. Rev. C 34, 2248
- 3. K. T. Lesko et al., Phys. Rev. C 34, 2256 (1986).
- 4. E. B. Norman et al., Astrophys. J. 281, 360 (1984).
- 5. C. Schlegel et al., Phys. Rev. C 50, 2198 (1994).